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Left regular representation of sZ,(3): reduction and 
intertwiners 

Ludwik D&owski and Preeti Parashar 
SISSA, Svada Costiera 11, 33014 Tneste, Italy 

Received 23 May 1994, in final form 6 December 1994 

Abstract. Reduction of the left regular representation of the quanmm algebra s1,(3) is 
studied and q-difference intertwining operators are “smcted. The irreducible refiresentations 
correspond to a q-deformation of the spaces of local sections of certain line bundles over the 
flag manifold. 

1. Introduction 

Representations of quantum groups in terms of q-difference operators and their physical 
applications to coherent states and Fwk-space representations have recently become 
the topic of intense study, see e.g. [1-4]. Furthermore, reduction of the left regular 
representation to an infinite family of (reducible and irreducible) representations and the 
q-difference intertwining operators have been studied in examples of Lorentz ‘quantum 
algebra [5], sZ&) and its contraction to e,(2) [6], and following the canonical procedure 
[7] for q = 1. 

In this paper we investigate the case of sZ,(3), a quantization of the simple Lie algebra of 
rank two, which besides being computationally more involved, presents some new features 
useful for a generalization to the case of sl,(n) and then to q-deformations of all semisimple 
Lie algebras. This will help us to understand the important relation between representation 
theory and geometry of quantum groups better. 

We shall denote by G, the quantum group Fun,(G) and by g, its dual U&), 
a quantization of the Lie algebra g of G. Recall that the left regular representation 
L : g,xG, + G,, (a,’p) + L(a)’p, andtherightregularrepresentation R : g,xG, -+ G,, 
(a, ‘p) --f ,R(a)rp, of g, are defined on G, by 

(L(a)co) @I= co(s(a)b) (1.1) 

(R(a)v) (b)  = (1 .a 
respectively, where a, b E g,, q E G ,  and S is the antipode. 

We shall reduce the left regular representation on the eigenspaces of the right regular 
representation of the Borel generators; namely, we shall impose thecondition that the Cartan 
generators act as a multiplication by fixed numbers (to be specified further) and that the 
other Borel generators vanish. Some of the remaining generators of g then yield (via the 
right regular representation) interesting intertwining q-difference operators, the kernels~ of 
which provide a further reduction. 

Symmetry considerations have been used as a very powerful method in the developement 
of theoretical physics in recent years. Several equations of mathematical physics are 
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interesting merely for the reason that they possess an underlying symmetry. The differential 
operators corresponding to such equations can be viewed as intertwiners between some 
representations of this symmehy group. Our approach may yield a preferred deformation of 
such intertwiners and related equations which otherwise is highly non-unique. One expects 
the most interesting examples to be provided by non-simple groups and algebras (containing 
e.g. the translations), see e.g. [SI, but,their q-analogue is not yet fully developed. For that 
reason it is interesting to study the simple Lie algebras, the lower dimensional examples 
of which are certainly relevant for physical applications. In the simplest case sl,(Z) [6] 
the intertwining operator turns out to be the widely known q-derivative; a q-deformation 
of the holomorphic (Dolbeault) derivative and a pair of such operators have been found 
in [5]. The first less well known case to which we devote our study is s1,(3) (or its real 
form suq(3)).  (The case of slq(4), or its real form $U&, 2),  is interesting for providing a 
q-conformally covariant deformation of the Maxwell equations but is, however, outside the 
scope of this paper.) 

L Dpbrowski and P Parashar 

2. Preliminaries on sZ,(3) and SL,(3) 

The generators of SL,(3) (quantization of the algebra of complex functions on SL,(3)) 
are the unit 1 and t i j .  with i, j = 1,2,3, arranged as a 3 x 3 matrix T ,  satisfying the 
commutation relations 

RTiTz= TzTlR (Ti = T @ I ,  Tz = I @  T )  (2.1) 

where 
3 3 3 

q!  R = q C e i t  6 eii + e t i  @ e j j  + A  e i , j  8 e j , i  (2.2) 
i # j  i > j  

with h = q - q-'. More explicitly, we have 
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where z j  are the quantum minors. For c i  = q. with the *-conjugation (complex  anti- 
linear algebra anti-involution and co-algebra involution) ti: = Stji, SL4(3) becomes a Hopf 
*-algebra denoted by SU4(3). 

As generators of the algebra sZq(3), dual to SLq(3), we shall use the unit 1 and the 
functionals which have been introduced in [9]: Z; with i c j ,  Zii with i > j ,  1: and Zt; where 
i, j = 1.2.3. when arranged in upper- and lower-triangular matrices L" respectively, they 
are defined by the duality conditions 

(L*, fi  . . . T J =  R : .  . . R,' for m = 1.2,. . . (2.9) 
where for 1 < < m, Tt act in the tth factor, R: act in the factors with indices 0 and .t 
of (C3)@("'+I), R+ = P R P ,  R- = R-' and P E Mat(C3 @ C3) is the permutation matrix. 

The commutation relations are 
R+L*L+-L*  1 2 -  2 L 1 R  f + R+L+L--L-L+ 1 2 -  2 , R '  + (2.10) 

1% L I  I I  = 1 i = 1,2 ,3  (2.11) 
Additional relations are (see [9,10]) 

+Z+Z+ -1-1-1- = 1. 4 1  22 33 - 11 22 33 

The Hopf algebra structure is then given by 
AZi CJ = 15 @ E $  

(2.12) 

(2.13) 

El* t j  = 8.. 'I (2.14) 

and the antipode which is defined as for T but with the replacement of q by q-I. The 1; 
can be expressed in terms of the more popular generators qH'. Xi',  i = 1,2 (see [9,111) via 

where 

(qm - ~ ) ( ~ m - t  - 1). . . ( f - k + 1  - 1) 

The Hopf algebra structure is then given by 

A ( H j ) = H ; @ I + l @ H j  

E ( $ )  = 0 

A ( X i ) -  i - x+ i @ -H; /2  + q H i / 2  @ x i  
&(Hi) = 0 

S(X') = q - p x : q p  S (Hi )  = -Hi 
with p = H,/2, where U belongs to the set of positive roots. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 



2836 L Dpbrowski and P Parashar 

3. The left regular representation of s1,(3) on SL,(3) 

It can easily be seen from the definition (1.1) that the left regular representation of l$ 
amounts to a multiplication of the generator matrix T from the left by the following 
numerical matrices: 

Similarly, the right regular representation amounts to a multiplication of T from the right 
by the following matrices: 

1 0 0  

0 0 1  
(T, l&)=q-f  (0 q 0) 

(T,&)= -qih 0 0 0 
(0 0 0) 

As an (overcomplete) basis of SL,(3) we can take the ordered monomials 

(3.3) 

where i =: (nl I ,  n ~ z ,  . . . , n33) with nij E Et and we use (unless otherwise stated) the usual 
ordering, i.e. first according to the row index and then the column index. 

=: tn!,t"" 
11 12 . . . t ;  ;" 
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In what follows we shall need an independenr basis for SL,(3) which we believe must 
be known but which we have been unable to find in any literature for SL,(n) with n 2 3. 
In order to obtain such an independent basis we have to restrict the elements f A  by the 
deb = 1 condition (2.2). We proceed as follows. 

Assume for a moment a different ordering according to which the maximal power 
( t l l f 2 2 f 3 3 ) p ,  where p = m i n { n l l ,  nn, n 3 3 } ,  of the product of diagonal generators til, tzz 
and t33 comes first, then the remaining powers of (at most two of) tii and finally the other 
generators t i j .  i # j ,   in^ the usual order. (This is a convenient choice, inessential for 
the outcome.) Using (2.2), t l l f Z Z f 3 3  can be expressed as a polynomial in rij of degree of 
at most one in any of the generators til, tu and r33. Unfortunately, by re-ordering we 
may raise the degree in the diagonal generators; however, by analysing the commutation 
relations (2.3) we see that some of them (of the exchange type) are innocuous. Those 
which are of the commutator type and between the diagonal generators produce only the 
non-diagonal generators t j j  and lower the degree of two diagonal generators. Next, those 
of the commutator type between the non-diagonal generators produce at most one diagonal 
generator (namely fzz). Altogether, there is a net lowering in the complexity of the degree 
of the product t l l t z z t 3 3 .  This allows us to lower this degree consistently by iteration, until 
one of the diagonal generators is absent. Finally, by excluding the overlapping cases we 
arrive at the following result. 

The independent basis in sZ,(3) consist of three sectors composed by the elements f' with 
one of the following restrictions: 

(i) n l I = O  

(ii) rill > 1, n u  = 0 

(iii) rill 2 1, 1122 2 1, 1133 = 0. 

Now, by iterating the twisted derivation rules for sZ,(3) 

(3.4) 

(3.5) 

we obtain the action of the representation L on tE which we give in the appendix. 

4. Reduction and intertwiners 

We impose the conditions of the (infinitesimal) right covariance on the independent basis 
for SL,(3). First, we consider only those functions p (i.e. the multilabels t) on which 

R(@* = 0 i < j .  (4. I ) 

By these conditions some of the indices nij have to vanish, but for some others there 
is a possibility of compensation between various pieces, cf (AIOXA12). This requires 
solutions to be in the form of an infinite series. Instead, we shall assume invertibility of 
some (special combinations of) generators tij and may recover the series by formal expansion 
of the inverses in q. 
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Note that (4.1) is not the only possible condition. There is a discrete choice of putting 
either X+ or X- equal to zero, corresponding to the lowest and highest weight modules 
respectively. In addition, there is a continuous choice of the Bore1 subgroup (or the set of 
positive roots); we expect that, for finite-dimensional groups, the results will not depend on 
this choice up to an equivalence. 

We can also see that the solutions of (4.1) have to be built from generators t i3 in the 
last column and from minors mil of the first column (mi] is the minor of t i j ,  i.e. the q- 
determinant of T with ith line and j th  column removed). Due to (2.4) one of the generators 
is dependent on the rest and we choose to delete m31. Next, we impose that on * 

R(l$)@ = expri@ (4.2) 

for i = 1.2 (the case i = 3 is not independent due to ('2.12)), where the labelling of 
numbers rl and of r2 will be speciEed further. We note the multiplicative property of the 
eigenvalue of R(Z,?) with respect to the product of eigenvectors and note that consequently 
the quotients fi3f;;' and milmj;' have eigenvalue one. Among them, we choose to work 
with the following three independent combinations: 

W l  f13tG1 w2 = tatZl w3 = m2lm;l (4.3) 

where m21 = t12t33 - qtl3t32 and m l ~  = tnt33 - qt23t32. 

determined in terms of rl , rz. Indeed, we obtain 
Instead, in order to solve (4.2), we employ the combination mf1t&, with j l ,  j2 to be 

rl = -U2 + 2jl)h/3 r2 = -0'1 + j d h / 3  

where q = exp h.  Thus, since jl , j2 E Z, the admissible values of rl and of r2 have to be 
quantized in units of h/3. Finally, the basis in the space 5, =: ( j l ,  j z ) ,  of the common 
solutions of (4.1) and (4.2) consist of the ordered monomials 

(4.4) 

where nl,  n2, n3 E %+. In this way we obtain an infinite family of reduced representation 
spaces 2, indexed by the,integers jl , j z .  

It is remarkable that the three independent variables wi form a closed algebra: 

W l W 2  = qwzw1 ~ 1 ~ 3  = q - ' W 3 w l  w 2 ~ 3 = q w 3 ~ 2 + h w l .  

We also give some relations useful for the computations that follow: 

w;w2 =q-"w2w; + ~ q - ' [ n ] w l w ; - '  w3w; = q-"w;w3 + .hq-"[nlwlw;l-'. 

Moreover, the two 'spectators' t33 and mll commute: 

t33m11 = m1tf33 

and have the following commutation relations with the variables wi: 

wv" =qmllwl W ~ I  = ~ I I W Z  w3m11 =qmiiws 

W l h 3  = qt33w1 w2133 = qf33W2 W3t33,= t33w3. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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We note that our wi are also the relevant variables as far as the global covariance is 
concerned. This can be seen from the Gauss decomposition of T: 

0 
0 

(4.10) 

By a lengthy but straightforward computation, iterating the twisted derivation rules, we 
obtain the explicit formulae for the representation in 5: 
~ ( p ) @ ;  = -*q1-"2-")+(2j,+~*)/3[nz~41~."z-l."i 

J 

+ ~ q 1 - n z + t i ~ - j ~ ) / 3 [ n 3  - j 114; ni.nz.ni+l (4.11) 

(4.12) 

(4.14) 

(4.15) 

(4.16) 

L(Q,$; = hq"i-l+tii-a)/3[n3]911."2."-' J + ~ q " ' - " 1 + t i ~ - h ) / 3 [ n , ] g n ~ - l . n ~ + l . n ~  J (4.17) 

~ ( i g ) @ ;  = 1~-l+(i ,+Zj,) /3[~~l4: ' ."~-' ."~ J (4.18) 

,-(i-& = hq"~-l+(j,+2h)/3[ m14; n~--l .nz+i (4.19) 

So far we have restricted the left regular representation to (infinite dimensional) 
subrepresentations q. The restricted functions depend, effectively, only on the variables 
wi since for each fixed 7 the factor m f l f h  is fixed. In order to pursue the reduction to the 
end and to obtain the functions depending manifestly on wi only, we associate with each 
4 E Zj a function 4, by the formula 

4 = mll -11 t-h 33 . (4.20) 

We note that we actually have a freedom to work with variables proportional to wi: 

zi = ciwi (4.21) 

where Ci are constants depending on q and 7. (This leads to an equivalent representation.) 
In order to simplify the formulae we choose 

cl = c, = ql--Ot+2jd/3 c3 = q l + c i r j t ) / 3 .  (4.22) 
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The representations 
the basis z;'zTz;': 

(4.1 1 t(4.19) acting in induce the following transformation rules on 

(4.23) 

&&)z; 'z~z; '  = ~ ~ - n 1 - ~ ~ + ( 2 h t j 1 ) / 3 [  jI . - n31z;'q+'z;'~~ 

+ Aq-n2t2j2[nl - I t2 -~n3 - j l  + j2]~;~"z?z;1 (4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

~ ? ( ! ~ ) z ; ' z ~ z ; '  = A q " [ n ~ J z ~ - ' z ~ ~ ; ' .  (4.31) 

These expressions define the representations L j  which act in the (same for all 7) space of 
polynomials 6 in z; (which as a linear space is just Tw). (Note, however, that the concrete 
form of zi depends on we do not indicate this dependence explicitly in order to simplify 
the notation.) Using the operations Mi, rescaling the variable zi -+ qzi, the q-derivative 
D i f  = (Mi - M;') f / (q  -q-')z and the operator Z; and multiplying by the variable zi, all 
of which by convention act directly on the ith place in the ordered monomials, we obtain 
the following reduced q-differential representation: 

&I;) = -AqZtGl-h)/3M-'M-lL) 2 + A(q-j'M3 - qjlM-' 3 )  M-'Z3 2 

& p ) z ; ' z ~ z ~  = q-m-n+(2jxth)/3 Zl nl 22 nz z3 n3 

& q ~ ~ y ~ y ~ y  = q-n+n~t( j~- jx) /3  z I  ni z Z z 3  ni n3 

&&)z; 'z~zy = qn~tm-D'&jd/3 zI  nl z2.z3 ni ni 

&-J~;I~T~;" = hq"l [ n 3 1 z ; ~ z ~ z ; l - I  + ~ q ~ z t n ~ t + ( j , - M ) / 3 [ n l l z ; l - ~ z ~ z ~  

"! nz-1 "3 & ; ) z ~ ' z T z ~  = A[nzlzl zz z3 

(4.32) 

L($) = -Aq(h-h)/3MIZ1D3 + h(q-jZM-'M-'M 1 2 3 -q"MiMzM;')Zz ' (4.33) 

+ Aq2h(qh-hM1M;IM;' - qjl-hM-1M I zM3)MT'Zi (4.34) 

&:,) = q ( ' U ~ t j d / 3 ~ - l ~ - l  1 3  (4.35) 

&&) = q-D'1tzj2)/3MIMz (4.37) 

&/;) = AD2 (4.39) 

&&) = Aq +M3 (qh M-' 3 - qjl M3)M;' M;' ZzZ3 

E(&) = q(i1-h)/3M-'M3 2 (4.36) 

k(&) = A M I &  + Aq(jl-j2)/3M~M-1D 3 1  (4.38) 

&Z;) =AM&. (4.40) 
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We remark that althougk originally we assumed jl  , j 2  E Z, the formulae (4.32)-(4.40) also 
define a representation 5 of slq(3) for arbitrary j~ , j 2  E C however, only for j1, jz  E Z do 
they comprise of a deformation of representations which are integrable to a representation 
of the group SL(3, C). 

Now we consider the right regular representation (A16HA18) of the remaining 
generators on @! and restrict it. First, we verify when these representations are defined 
as operators between some of the spaces 3. It turns out that for any j1, j 2  the image of 
R(&) always contains non-admissible terms like m12 or m22 and we do not consider this 
operator any further. Instead, we have 

~ ( 1 ;  16; = kq (211 -1, ) /3  ( q n ~  -1 fn31 w;' w;? 

J 

,h -2 h + l  
11 t33 

- [ j11w;l w? w;3m:;-ltkm12) (4.41) 

+ [jzl w;'w? w;)m[; $-'t32). (4.42) 

Thus for 'E.(&) and for RUG) the non-admissible terms (with t32 or mn) are not present 
precisely when j1 = 0 and j 2  = 0, respectively. Then, in fact, we obtain two intertwiners: 
the restriction of R(Z;) to '.& which maps into ?Iz , j ,+ l  and the restriction of R(1,) 
to %,,o which maps into %,+l.-z. By similar computations (first for the squares of these 
operators and then by induction) one obtains a family of other intertwiners 

(4.43) 

(4.44) 

(4.45) 

R(i-)h+1 21 :I: Jl.12 . + 7 -jj-2.jz+jt+l . 

R(Q~+' : q l ; . j 2  + q,+j2+r,-jz-z 

R (Q~+~R(z ; )~~+~ : %,,j%-j,-I + %-j,-1.-6-2 

for j1 E Z+, j 2  E C 

for j z  E + ,  jl E C. 

for j1, j 2  E Z+ 

There are also some mixed intertwiners: 

R ( 1 ; p + l R ( l -  32) jz+l : 7 J , - , ~ - I , ~ ~  --t I-j l-z. j ,- jz-l  (4.46) 

In the same manner as $at used for the left-represented operators we perform the explicit 
reduction to the space 5 of functions of the variables zi. Keeping track of the changes of 
indices i and of the labels 7 on which the coefficients Ci depend, we obtain the two basic 
intertwiners 

forji, j 2  E Z+. 

&&)z;lz?zp = ~+q'+zj2/3D 3 (4.47) 

'&;)z;lz?z;" = -).q1-jl/3D,Z3 - ,Q-2jd3MlD2, (4.48) 

The other intertwiners can easily be obtained by observing that the explicit formula for the 
intertwiner corresponding to the product of (any number 00 1; and 132 is just the product 
of the basic intertwiners 

*((&)jYLP) = (?(G))j' . (4.49) 

They clearly satisfy 

(4.51) 
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7i((l,)jZ+I(l;,)jI+l) . 2j,,h-j,-i(lu) * -L. - -,2-,,-l,-h-2(zkt) * -  . R ((Z&+I(ZJj~+1) (4.53) 

where we have explicitly indicated the labels of the representations f?. These intertwiners 
give rise to various partial equivalences between some 9. hi particular, the kernels of 
these intertwiners form invariant subrepresentations. Thus, for generic j1, j 2  E C the 
representations 3 are irreducible except for j i  E Z+ or j 2  E Z+, when they are reducible. 
To further study the reducibility, we note that all the intertwiners which act on for given 
j1, j z  E Z+, contain as a last factor either the j, + 1, power of the basic intertwiner (4.47) 
or the j, + 1 power of (4.48). Thus, it is sufficient to consider only the kemels of the two 
intertwiners (4.50) and (4.51). It turns out that their common intersections are irreducible 
(sub)representations and have the dimension d = (jl + 1)(j2 + 1) (1 + (j,  + j2)/2). They 
consist of polynomials in zi of limited order, depending on i and on J ,  and are q- 
deformations of the well known representations of sl(3). In particular, (1,z1,z2) is a 

basis of 3, = ker*(l;,) n ker(*(Z;)) c {1,z3,z2z3 - q-1’3zl] is a basis of 

3; = ker (*(I;))  n ker*(l,) C 5.0 and (1, ZI ,  ZZ. z3. z1z3. Z Z h ,  q”3(l + q)z$z3 - 

[Zlzlz~, q1fi[21z1z2z3 - (1 +q)z:} is a basis of 8, = ker (*(lG))’ nker (*(l;)) c~%J. 

2 

2 

2 

5. Final remark 

In this paper, the method previously applied to simpler examples has been extended to slq(3). 
This permits us to obtain, in a canonical way, some important (reducible and irreducible) 
representations of s1,(3) and their intertwiners which present some new features with respect 
to the slq(2); namely, in sl,(2) the commuting algebra of the intertwiners has just one 
generator, while in sl, (3) we obtain three non-commuting difference operators. Moreover, 
s1,(3) is the first case in which the space of representations becomes structured, that is, 
the Weyl chamber has edges and interior parts corresponding to the different homogeneous 
spaces; consequently not all representations are generated as tensor powers of a single 
representation. 

The reduction procedure corresponds, in fact, to working on the quantum three- 
dimensional complex flag manifold F,(I, 2; 3) (the quotient manifold of SL,(3) by the 
Bore1 subgroup), cf [12,13]. This is indeed the case for the representations inside the Weyl 
chamber ( j l  . j, # 0). while the representations on the edges (jl or j 2  = 0) live, as in 
the previous simpler examples, over the q-projective spaces (or 9-Grassmannians). Our 
functions are local representatives of global sections, like e.g. m:;tg, of some quantum line 
bundles over F&, 2; 3).  This holds over one particular patch, coordinated by the variables 
zi (or wi). corresponding to the requirement of invertibility of mu and t33. 

Our work relates to the Borel-Weil theory which links the irreducible representations 
of groups to the spaces of sections of certain bundles over related quotient spaces. A q- 
deformation of this theory [14] is not fully satisfactory from the geometric point of view 
as it mainly uses purely analytic and algebraic methods. Our approach should be useful 
for that purpose and provides concrete examples which can be used as a test for choosing 
a proper definition of what an abstract quantum bundle should be (which still lacks full 
agreement). 

We have also followed the original idea with the modification that we have used the 
infinitesimal covariance under g, rather than the global one to induce the character of 
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the Bore1 subgroup. Though closely related, this seems to be conceptually simpler than 
identifying what the qranalogue of induced representations should be (which would require 
global covariance under the co-representations of Gq), see for example [15-181. A detailed 
comparison of these two methods and the geometry of the quantum homogeneous space 
Fq(I ,  2; 3) will be discussed in a forthcoming paper. 

We intend to extend the above programme to the general case of slq(n); this requires a 
more convenient working form of the exchange relations for the flag coordinates, permitting 
us to order them in a consistent way. A reIevant work [19], about which we were informed 
after submitting this paper, completes the above programme for Uq(s1(3)) only and has an 
overlap with our independent results. 

Acknowledgment8 

We thank Professor C Reina for~helpful discussions and the referees for constructive 
criticism. 

Appendix 

Denotes = &+nl2+. . .+n33). The action of the representation 1: on ti = t;;'tF . . . g? 
is: 
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qQt: = q s - n ~ ~ - n ~ z - n 3 3  t 2 

,-(I- 21) t: - - Iq-s ( q ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ n 1 3 1 t ; ~  . . . t;:-l . . . p 3 + 1 g  23 

+ q"~~t"ut"~~[nIzlr;;'t;~-' . . . tg+l., . t ; ~  

+qnll+nutnu [nll]t;;~-l . . .*p . . .s' ) 

L Dpbrowski and P Parashor 

(A6) 

(A71 

,C(lG)tE = Aq-s qnzltnutnu[nu]t;i' . . . thU-l , , .<Ftl ( 
+ q n ~ + n ~ ~ t n y n 2 2 1 t ; ~ ~  . , , g - 1  . . . *;?+I 9 3  

+q"" tn32+n31 [nzllt;;' . . . ti;"-' . . . *;?+I . . .t;$ 
4 3  

(A81 

,C(l- 31) fi - - iq"31-s (4  nl,+"i*+na [n131r;;' . . . r ; y  . . . g + I  

1 
+ qn, , t~ntnl*[nlz]t;; ' t ;~-~ , . . g + 1  nU 

*33 

+ q ~ z ~ t ~ ~ ~ - ~ ~ ~ [ n l l ~ t ; ; ~ - ' .  , . t ; p l  , , . t ; ~  

+ fZqn33-S (~"~~+"~~[nlzl[nulC;;;:' . . . 2;p-I . . . tg+l$=-' . . . t ; y  

+ p I  t n a  [nll][nu]t;;~-' . . . tr;;l"tg-' . . . t;yt;;u) 

+ q"*ltnn [nll][n23]t;;'-1.. . c'" . . .tin;i-' . . . * g + 1  

(As) 

(q""tnn"[n31]f"" fis1-l 4 r t l  n3, R(l&)tE = Aq""-' I l " " 3 1  '32 f 
+qn,Ltnu [nzl]t;;' . . . . q - I t 2 + 1  . . . c' 
+q"~'"~[n,,]t;:'-'f;~f' . . . g) (A101 

R(l2)tZ = hq"33-S (q"12+"'[n3z]t;;' . . . *32 "32-1 t33 ns+1 

+ qn12+"n [nzzlt;;' . . . hz na-1 tu n g t l  . . . ti;' 
+qm3tn23 n,, n,*--ltns+l 

+ q " " t " r l t " 2 ~  [nzl]r;;' . . .rz";,-l . . . tg+' ... t;? 

[n lz lh  4 2  13 . . ,133 "9 (All) 

~ ( 1 ; ) ~ :  = Aqw- r  (qnl+n"+n'"n31~t;II' , , , g ~ - 1  , . . g + 1  

+qn,3tn , l tnn [~lll~;~l-l  . . . t ~ ~ 3 t I . . . t ~ ? )  

+ pqn33-.9 ( g ~ ~ ~ t ~ ~ t ~ n z l ~ [ n 3 2 ~ r ; ~  . . . t;;-lt;lz"+l , , , g-1 '.' p + 1  33 

+ q""+"u [nll][n3z]t;;'-'t;;" . . . f;pt;?+I 

+q~~~+"~~[nnl[n*zlf;; '- ' t;~+~ . . . t g - l g y  . . . g) (AW 

R(p)p = q-st"u+nn+n31t2 ~ 4 1 3 )  
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