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Left regular representation of sl,(3): reduction and
intertwiners
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Received 23 May 1994, in final form 6 December 1994

Abstract. Reduction of the left regular representation of the quantum algebra sig(3) is
studied and g-difference intertwining operators are constructed. The irreducible representations
comespond to a g-deformation of the spaces of local sections of certain line bundles over the
flag manifold.

1. Introduction

Representations of quantum groups in terms of g-difference operators and their physical
applications to coherent states and Fock-space representations have recently become
the topic of intense study, see e.g. [1-4]. Furthermore, reduction of the left regular
representation to an infinite family of (reducible and irreducible) representations and the
g-difference intertwining operators have been studied in examples of Lorentz quantum
algebra [5], si,(2) and its contraction to €,(2) [6], and following the canonical procedure
[7) forg = 1.

In this paper we investigate the case of sI;(3), a quantization of the simple Lie algebra of
rank two, which besides being computationally more involved, presents some new features
useful for a generalization to the case of sI,(n) and then to g-deformations of all semisimple
Lie algebras. This will help us to understand the important relation between representation
theory and geometry of quantum groups better.

We shall denote by G, the quantum group Fun,(G) and by g, its dual U(g),
a quantization of the Lie algebra g of G. Recall that the left regular representation
L: g xGy = Gy, (a, ) = L(a)p, and the right regular representation R : g, x G, — Gy,
(@, ) - R(a)p, of g, are defined on G, by

(L(a)p) (b) = p(5(a)b) ’ (L)
(R(a)p) (b) = ¢(ba) (1.2}

respectively, where a, b € g;, ¢ € G, and § is the antipode.

We shall reduce the left regular representation on the eigenspaces of the right regular
representation of the Borel generators; namely, we shall impose the condition that the Cartan
generators act as a multiplication by fixed numbers (to be specified further) and that the
other Borel generators vanish. Some of the remaining generators of g then yield (via the
right regular representation) interesting intertwining g-difference operators, the kernels-of
which provide a further reduction.

Symmetry considerations have been used as a very powerful method in the developement
of theoretical physics in recent years. Several equations of mathematical physics are
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interesting merely for the reason that they possess an underlying symmetry. The differential
operators corresponding to such equations can be viewed as intertwiners between some
representations of this symmeiry group. Our approach may yield a preferred deformation of
such intertwiners and related equations which otherwise is highly non-unique. One expects
the most interesting examples to be provided by non-simple groups and algebras (containing
e.g. the translations), see e.g. [8], but their g-analogue is not yet fully developed. For that
reason it is interesting to study the simple Lie algebras, the lower dimensional examples
of which are certainly relevant for physical applications. In the simplest case si,(2) [6]
the intertwining operator turns out to be the widely known g-derivative; a g-deformation
of the holomorphic (Dolbeault) derivative and a pair of such operators have been found
in [5]. The first less well known case to which we devote our study is 54,(3) (or its real
form s1,(3)). (The case of sl (4), or its real form suy(2, 2), is interesting for providing a
g-conformally covariant deformation of the Maxwell equations but is, however, outside the
scope of this paper.)

2. Preliminaries on si,(3) and SL,(3)

The generators of SL,(3) (quantization of the algebra of complex functions on SL,(3))
are the unit 1 and #;;, with i, j = 1,2, 3, aranged as a 3 x 3 matrix T, satisfying the
commutation relations

RNT>=TTR (=TI, LH=IQT) 2.1)
where
: 3 ] 3 3
45R=qzei1®€i:+zeu®ejj+lzez,j®€j.i (2.2)
7 i ing

with A = ¢ — g™, More explicitly, we have
Bty = gty i=k j<lori<k j=I
(27, 2] = Aty i<k, j=<l (2.3)
{tij, ] =0 i<k, j>1.
An additional relation is
d;t = t11(toatss — qlaatsz) — qtor (fratss — gliataz) + g a1 (iatos — ghistaz) = 1 (2.4
which can also be written in an equivalent form as

d;st = 111 (totas — gimats2) — qtia(tartss — taata1) + g hisltaitsr — Gonatar) = L. (2.3)

Considered as a Hopf algebra, SL,(3) has the co-multiplication A, co-unit &, and antipode
S given on the generators by

Aty = tig @ by (2.6)
& =& (2.7
St = (—q) 9% (2.8)
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where 7; are the quantum minors. For § = g, with the #-conjugation (complex anti-
linear algebra anti-involution and co-algebra involution) £ = St;;, SL4(3) becomes a Hopf
#-algebra denoted by SU,(3).

As generators of the algebra s/,(3), dual to SL,(3), we shall use the unit 1 and the
functionals which have been introduced in [9]: l;}' withi < j, I; withi > j, I+ and I;; where
i, j =1,2,3. When arranged in upper- and lower-triangular matrices L* respectively, they
are defined by the duality conditions

(L5 Ty...Ta)=RE..RE form=12,... ' 29
where for 1 < € < m, T;® act in the £th factor, Ry act in the factors with indices 0 and £
of (C3H®Mm+) R+ = PRP, R~ = R~! and P ¢ Mat(C? @ C?) is the permutation matrix.

The commutation relations are

R¥LILy = L3LTRY RYLYL; = L7L¥R*. (2.10)
Additional relations are (see [9, 10])

=1 i=1,2,3 : 2.11)

by = Ihint, = 1. (2.12)
The Hopf algebra structure is then given by

AL =1 @6 (2.13)

el = & : (2.14)

and the antipode which is defined as for 7 but with the replacement of g by g~!. The l;j?
can be expressed in terms of the more popular generators g™, Xi*, i=1,2 (see [9,11]) via

gt =@y =)
Xt =l SEE) P2 X =l S @)
X7 = -+ g8 gy a2 X; = g a7

They satisfy the commutation relations

[H:, H1=0  [H, XF1=+(w, )X}

(X} X7 =08y(B0)  ij=1.2

(2.16)
m
Z(_ l)k (r;:) qk(k-m)(ﬂf.ﬂ;)/Z(X;E)kX}b(th)m—k =0 for i # j
k=0 g
where
@™ —a™™
Hl=———7— m=1—A;
[Ai] P i
(m) _ (qm _ 1)(qm—1 - 1) . (qm—k+l o 1}
klg @ —DE-D-@-1D
The Hopf algebra structure is then given by
AH)=H®L1+18H, AXH) =XF@q ¥+ 4" @ X} (2.17)
gXH =0  s(H)=0 (2.18)
S(XEy=q~°XFq"  S(H)=-—H; (2.19)

with p = ¥ H, /2, where o belongs to the set of positive roots.
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3. The left regular representation of si;(3) om SL,4(3)
It can easily be seen from the definition (1.1} that the left regular representation of I‘f‘?

amounts to a multiplication of the generator matrix T from the left by the following
numerical matrices:

N /000
SHL.T)=¢3{0 1 © (Sli"z,T)z_qu(I 0 0)
0 01 000
, (000 /010
(SI?;,T):—in(O 0 O) (Slﬁ,T):Q'u(o 0 0)
1 00 000
fr o0 00 0
(515, T)=q5{0 ; © (S%,T)=—q3l(0 0 o) (3.1
0 0 1 010
0 0 1 L /000
(Sl;,,T)=q‘%A(o 0 0) (sz;;,r)=q—u(g 0 1)
000 000

/100
(Sl;;,r)=qs(0 1 o).
00}

Similatly, the right regular representation amounts to a multiplication of T from the right
by the following matrices:

fg 00 . {000
(T,1)=¢"3 (0 1 0) (T,lﬁ):q‘il(l 0 0)

0 0 1 00 0
L /000 L {010
(T,I;g)=q-u(0 0 0) (T,z;1)=—gsx(o 0 0)
100 000
(1 00 L /000
(7,13) =g (0 g 0) (T,z;;)-_-g—u(o 0 0) (3.2)
0 0 I 010
/001 L /0 00
(T,I;l)=—qil(0 0 0) (T,l;2)=—qu(o 0 1)
000 000
/1 00
(T, 1 =q"3'(0 1 o).
0 0 ¢

As an (overcomplete) basis of SL;(3) we can take the ordered monomials
e (3.3)

where # =: (1)1, 112, ..., n3z) with n;; € Z. and we use (unless otherwise stated) the usual
ordering, i.e. first according to the row index and then the column index.
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In what follows we shall need an independent basis for SL,(3) which we believe must
be known but which we have been unable to find in any literature for SL,(n) with n 2 3.
In order to obtain such an independent basis we have to restrict the elements * by the
det, = I condition (2.2). We proceed as follows.

Assume for a moment a different ordering according to which the maximal power
(f11t22833)P, where p = min{ny;, noy, n33}, of the product of diagonal generators #11, fx
and f33 comes first, then the remaining powers of (at most two of) #; and finally the other
generators #;, i # jf, in_the usual order. (This is a convenient choice, inessential for
the outcome.) Using (2.2), 1122133 can be expressed as a polynomial in #; of degree of
at most one in any of the generators #)), #; and f3. Unfortunately, by re-ordering we
may raise the degree in the diagonal generators; however, by analysing the commutation
relations (2.3) we see that some of them (of the exchange type} are innocucus. Those
which are of the commutator type and between the diagonal generators produce only the
non-diagonal generators #; and lower the degree of two diagonal generators. Next, those
of the commutator type between the non-diagonal generators produce at most one diagonal
generator (namely £y}, Altogether, there is a net lowering in the complexity of the degree
of the product #3253, This allows us to lower this degree consistently by iteration, until
one of the diagonal generators is absent. Finally, by excluding the overlapping cases we
arrive at the following resuit.

The independent basis in 5/,(3) consist of three sectors composed by the elements ¢* with
one of the following restrictions:

@ nap=0
() np=1, np=0 (3.4)

-
Gi) mp=1, np>1, n33=0.

Now, by iterating the twisted derivation rules for s/,(3)

ey = ija ) - LEDY 3.35)
RUeY = Zm Yo -RUEYW , (3.6)

we obtain the action of the representation £ on t* which we give in the appendix.

4. Reduction and intertwiners

‘We impose the conditions of the (infinitesimal) right covariance on the independent basis
for SL,4(3). First, we consider only those functions v (i.e. the multilabels 7} on which

RUDY =0 i< j. @.1)

By these conditions some of the indices n;; have to vanish, but for some others there
is a possibility of compensation between various pieces, cf (A10)-(A12). This requires
solutions to be in the form of an infinite series. Instead, we shall assume invertibility of
some (special combinations of) generators #; and may recover the series by formal expansion
of the inverses in g.
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Note that (4.1} is not the only possible condition. There is a discrete choice of putting
either X* or X~ equal to zero, corresponding to the lowest and highest weight modules
respectively. In addition, there is a continuous choice of the Borel subgroup (or the set of
positive roots); we expect that, for finite~dimensional groups, the results will not depend on
this choice up to an equivalence.

We can also see that the solutions of (4. 1) have to be built from generators #;3 in the
last column and from minors m;; of the first column (m;; is the minor of ¢, ie. the g-
determinant of T with ith line and jth column removed). Due to (2.4) one of the generators
is dependent on the rest and we choose to delete ms;. Next, we impose that on ¥

RADY = expriyr (4.2)

for i = 1,2 (the case { = 3 is not independent duve to (2.12)), where the labelling of
numbers r; and of r; will be specified further. We note the multiplicative property of the
eigenvalue of R(J; *Y with respect to the product of eigenvectors and note that consequently
the quotients #32;; and miim ! have eigenvalue one. Among them, we choose to work
with the followmg three 1ndependent combinations:

- =1 -
w) = Il3t331 Wy = fz37y W3 = mglmnl (4.3)
where ma) = t1atss — gtisty and mip = tntsz — ginby.

Instead, in order to solve (4.2), we employ the combination m{i#f2, with Jji, j2 to be
determined in terms of ry, ro. Indeed, we obtain

rn=—{j+2j0h/3 r2 =~ + joh/3

where g = exph. Thus, since i, 2 € Z, the admissible values of ry and of r; have to be
quantized in units of #/3. Finally, the basis in the space 73, j =: (ji, j2), of the common
solutions of (4.1) and (4.2) consist of the ordered monomxals

¢F = wi'wpwPm o} .4)
where nq, #a, B3 € Z,.. In this way we obtain an infinite family of reduced representation
spaces 'I}, indexed by the-integers jj, ja.

It is remarkable that the three independent variables w; form a closed algebra:
wiwz = quaw wiws = g~ wau waws = qwawa + Awy. 4.5)
We also give some relations useful for the computations that follow:

- wawh = g "wiws + Ag M mwwli . (4.6)

wiws =g "wawsi + Aq"l[n]wlwgI
Moreover, the tﬁo ‘spectators’ #33 and my; commute:

f33may = mits3 4.7
and have the following commutation relations with the variables w;:

wimy = gmyw) Wanly) = MWy WMy = gmy wa 4.8)

wilkaz = Gz Walyy = Glzza Wyl = fyzws. 4.9)
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We note that our w; are also the relevant variables as far as the global covariance is
concerned. This can be seen from the Gauss decompositon of T

1 ws wy 11 — Wity My — Wity 0 0\ / 1 0 0
0 1 w 0 t-;lmn 0 (mﬁlmm 1 0) .

0 0 1 0 Q I33 t§1t31 t?:gll}z i
(4.10)

~ By a lengthy but straightforward computation, iterating the twisted derivation rules, we
obtain the explicit formulae for the representation in 77

ﬁ(l?'z)'i’? = ‘_A_ql—nz—n3+(2j:+;z)/3[n2]¢}n,nz—l,na )
1=py-+ (2= f1}/3 — )Rt
+igq [ns — 1)¢; (4.11)
LA5)9E = Ag"@EFINB 4 oy gy j2]¢;;1.n;+1.n3
+ ag™ —Zhth)f3 [n3 ]¢?:1+1 Wy ita—1 4.12)
i

5(1?5)‘1’? = Ag! ORIy —py — g — i+ jz]¢?l+1'n2'n3

+ agrmmm =R _ gt ¢}z:.n2+1,n3+l (4.13)
£ ¢’f _ q—nl-—rz3+(1jl+f2)f3¢;: (4.14)
LHEE = gt iy (4.15)
L) = grrim= UG (4.16
LUR)E = AgnTIHO-R P pgygmmaml ¢ g Talgp T @)
£5) ¢: = 2g~M+0i +2j2>/3{n2]¢?,n2—1.n3 | (4.18)
£U3) ¢? — gn2—1+(.r‘x+2j:)/3[nl]¢;_§1—'-"2-ﬂa_ : 4.19)

So far we have restricted the left regular representation to (infinite dimensional)
subrepresentations 7. The restricted functions depend, effectively, only on the variables

w; since for each fixed j the factor m{']tg is fixed. In order to pursue the reduction to the
end and to obtain the functions depending manifestly on w; only, we associate with each
¢ € T; a function ¢, by the formula

¢ = pmy e (4.20)
We note that we actually have a freedom to work with variables proportional to w;:
zi = Ciw; (4.21)

where C; are constants depending on g and J. (This leads to an equivalent representation.)
In order to simplify the formulae we choose

C} = Cy = g\ W23 Cy = g't =i/, ' 4.22)
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The representations (4.11)~(4.19) acting in 77 induce the following transformation rules on
the basis 2] 23" 23"

L) = —aghmm ot iy gt s

+ hg s — jileP 5T (4.23)
LAR 27 L = aght Byt gnt

+ Al -y — s — a2y (4.24)

Lahyg = Agmmne QIR nslz zgz+lzr3!3+1

+ Ag T —ny —m3 — i+ Al ey (4.25)
L) a5ia = gt @ikl gt (4.26)
LUH)P iz = gt il s 4.27)
LU 252y = g Urtinl3gh o g0 (4.28)
L) 2525 = rg" mle a2y + Mgt gl g (4.29)
ﬁ(l;z)z’l"zgzz;’ = ,k[,'zg]z:';‘zgrlzg3 (4.30)
LU 522 = Ag™{m)e " 2. @.31)

These expressions define the representations f'.j which act in the (same for all }) space ‘f:, of

polynomials ¢ in z; (which as a linear space is just Top). (Note, however, that the concrete
form of z; depends on j; we do not indicate this dependence explicitly in order to simplify
the notation.) Using the operations M;, rescaling the variable z; — gz;, the g-derivative
Dyf =(M; =M Y #/(g —g ")z and the operator Z; and multiplying by the varjable z;, all
of which by convention act directly on the ith place in the ordered monomials, we obtain
the following reduced g-differential representation:

L) = —Ag*t BB M M D, + Mg My — ¢ MM 2, (4.32)
Lag) = —aqUBDPM 2D+ Mg MT My My — gE MMM 2, (4.33)
L0 = 2qPRHIOB @R MT — gh MM M 2,25

+ AgP R (g M M MY — @R M7 MMM 2, 4.34)
L) = g+ nb syt (4.35)
L) = g8y (4.36)
L) = g 2B g, , 4.37)
£(i5) = AM D3 + g =3 M3 Dy (4.38)
L{z) = 1D, (4.39)

£5) =AM, D, (4.40)
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We remark that although originally we assumed j;, ]2 € Z, the formulae (4. 32)—(4 A40) also
define a representauonT of s1,(3) for arbitrary j;, j» € C; however, only for j;, j» € Z do
they comprise of a deformatlon of representations which are integrable to a representation
of the group SL(3, C).

Now we consider the right regular representation (Al6)}-{Al18) of the remaining
generators on qb;‘:. and restrict it. First, we verify when these representations are defined
as operators between some of the spaces 7. It turns out that for any ji, j» the image of
RU;) always contains non-admissible terms like m1o or mp and we do not consider this
operator any further. Instead, we have

- - ma=1__ =2 1
RUZEE = Ag® 0B (g~ [ngTuf witwy mfi 2t

. ,
— UilwMwRwPmd emy ) o (4.41)
RURIE = —AgUmifs gttt [, Tyt~ gy s+ "“réi‘z

2n —-r3—1 na=1_ n +1,4i
+ g [y Jwl wy w33m{‘1 ‘33

+ [plwP wPwPmdl e ). . (4.42)
Thus for R(I;;) and for R(i};) the non-admissible terms (with #33 or m;2) are not present
precisely when j; = 0 and j; = 0, respectively. Then, in fact, we obtain two intertwiners:
the restriction of R(;;) to 7 ; which maps into 7_5 ;41 and the restriction of R(l3;)
te 7; 0 which maps into 7; 1) —». By similar computations (first for the squares of these
operators and then by induction) one obtains a family of other intertwiners

RUZVH T = Tojajbirs for e By, peC (4.43)
RUGY T 4 > Tisjetmi-z for 1€ Zy, 1 eC. (4.44)
There are also some mixed intertwiners: )
RO RAY : T ot = Tpopmtmiez for 1, p € Ly 4.45)
RUGYHIRAZ Tty = Tojim2.jy— it forji, jr € Zy. (4.46)

In the same manner as that used for the left-represented operators we perform the explicit
reduction to the space ‘.T of functions of the variables z;. Keeping track of the changes of
indices 11 and of the IabeIs j on which the coefficients C; depend, we obtain the two basic
intertwiners

7%(22—1 )zflzgz‘.gh _ 'lq1+2j2/3D3 » @47

RUZ 222D = —Ag ™Dy 25 — ag' 120, D, (4.48)

The other intertwiners can easily be obtained by observing that the explicit formula for the
intertwiner corresponding to the product of (any number of) I;, and I3, is just the product
of the basic intertwiners

R (a0 = (Rap)” (Rap)” (4.49)
They clearly satisfy
~ i+l A N n fi+t
(R)"™ - 2@ = £sapsn @) - (R (@50)

A NBFD 4 - PR Y o
('R(f_sz)) Ly pGe) = Lhriir 2 G - (73(132)) {4.51)
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R U™ » L1, 2GS = Lo jimg jrmipt ) - R (0" (452)

R Uy - £y o1 U = Lpojin 2G5 - R (AP ) (453)

where we have explicitly indicated the labels of the representations L. These intertwiners
give rise to various partial equivalences between some ’f} In particular, the kernels of
these intertwiners form invariant subrepresentations. Thus, for generic ji, j» € € the
representations ’f} are irreducible except for j; € Z; or j; € Z, when they are reducible.

To further study the reducibility, we note that all the intertwiners which act on ‘f; for given
J1, ja € Zy, contain as a last factor either the j; + 1 power of the basic intertwiner (4.47)
or the j; + 1 power of (4.48). Thus, it is sufficient to consider only the kemels of the two
intertwiners (4.50) and (4.51). It turns out that their common intersections are irreducible
(sub)representations and have the dimension d = (j1 + D(jz + D1 + (jy + j2)/2). They
consist of polynomials in z; of limited order, depending on i and on j, and are g-
deformations of the well known representations of si(3). In particular, {1,z;,22} is a

~ n 2 ~
basis of 3; = ketR{{;;)} N ker(’R,(I;z)) C o1, {1,235, 2223 — g Y371} is a basis of
N 2 a -
3 = ket (RE5)) NkerRis) < Fo and {1, 21,2, 7, 2123, 2223, 4L + Q)kzs
N 2 ~ 2 ~
212122, 4121212225 — (1 + )23} is a basis of 8, = ker (R(3)) Nker (Rit)) < Fi.

5. Final remarks

In this paper, the method previously applied to simpler examples has been extended to 51, (3).
This permits us to obtain, in a canonical way, some important (reducible and irreducible)
representations of 5l,(3) and their intertwiners which present some new features with respect
to the 5i;(2); namely, in 5/,(2) the commuting algebra of the intertwiners has just one
generator, while in $1,;(3) we obtain three non-commuting difference operators. Moreover,
5l4(3) is the first case in which the space of representations becomes structured, that is,
the Weyl chamber has edges and interior parts corresponding to the different homogeneous
spaces; consequently not all representations are generated as tensor powers of a single
representation.

The reduction procedure corresponds, in fact, to working on the guantum three-
dimensional complex flag manifold F(1,2;3) (the quotient manifold of SL,(3) by the
Borel subgroup), cf [12, 13]. This is indeed the case for the representations inside the Weyl
chamber (j1 - ja % 0), while the representations on the edges (j; or j» = 0) live, as in
the previous simpler examples, over the g-projective spaces (or g -Grassmannians). Our
functions are local representatives of global sections, like e.g. m“t33, of some quantum line
bundles over Fg(1, 2; 3). This holds over one particular patch, coordinated by the variables
z; {or wy), corresponding to the requirement of invertibility of my; and t33.

Our work relates to the Borel-Weil theory which links the irreducible representations
of groups to the spaces of sections of certain bundles over related quotient spaces. A g-
deformation of this theory [14] is not fully satisfactory from the geometzic point of view
as it mainly uses purely analytic and algebraic methods. Our approach should be useful
for that purpose and provides concrete examples which can be used as a test for choosing
a proper definition of what an abstract quantem bundle should be (which still lacks full
agreement).

We have also followed the original idea with the modification that we have used the
infinitesimal covariance under g, rather than the global one to induce the character of
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the Borel subgroup. Though closely related, this seems to be conceptually simpler than
identifying what the g-analogue of induced representations should be (which would require
global covariance under the co-representations of G, ), see for example [15-18]. A detailed
comparison of these two methods and the geometry of the quantum homogeneous space
Fy(1,2; 3) will be discussed in a forthcoming paper.

We intend to extend the above programme to the general case of si;(n); this requires a
more convenient working form of the exchange relations for the flag coordinates, permitting
us to order them in a consistent way. A relevant work [19], about which we were informed
after submitting this paper, completes the above programme for U, (s/(3)) only and has an
overlap with our independent results.
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Appendix

Denote 5 = %(nu—i-nm—l—. . -+n33). The action of the representation £ on 1* = e N
is:

L@ = =g (g g eyt g
R PV P L P B
1—no; —naze=nizy o ni3+1 a1 133
+4 Inasley .. 8 02 g3 (al}
.C.(l;;)tﬁ = —}\.q‘f (ql—nn—nu—nsl [7721]3?1“ . t?r‘t]zl-{-l L t;!lal—l B _1;1335

B —— 1 -1
Al 7Y [ LY P -y
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